Tetrahedron Letters 51 (2010) 6451-6453

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of fused dihydropyrido[e]purines via ring closing metathesis

Konstantinos E. Litinas*, Andreas Thalassitis

Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

ARTICLE INFO

Article history: Received 11 June 2010 Revised 18 September 2010 Accepted 1 October 2010

Keywords: Dihydropyrido[e]purine Ring closing metathesis Stille coupling Pd(PPh₃)₄

ABSTRACT

Ring closing metathesis (RCM) of 8,9-diallylpurines or 9-butenyl-8-vinylpurines with the Grubbs 2nd generation catalyst resulted in fused 6,9- or 8,9-dihydropyrido[*e*]purines, respectively. The 8,9-dialkenylpurines were prepared from 8-bromopurines after 9-alkenylation and subsequent Stille coupling at C-8 with alkenylstannanes in the presence of $Pd(PPh_3)_4$ or $Pd(PPh_3)_2Cl_2$.

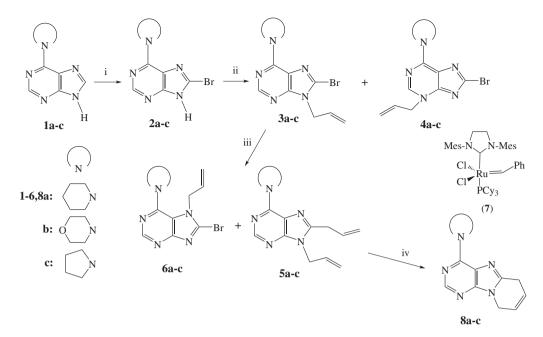
© 2010 Elsevier Ltd. All rights reserved.

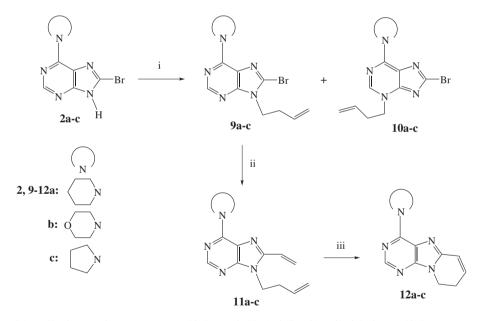
Nucleosides represent a class of compounds that possess very interesting biological activities,^{1–4} especially antiviral and anticancer. Such activities also appear in cyclonucleosides^{5,6} bearing a linkage between the heterocyclic ring and the sugar moiety. Fused purine derivatives also display a wide range of biological effects, for example, anti-inflammatory, antihypertensive, anxiolytic, antitumor, antiviral, and vasodilation activity.^{7–9}

Three different strategies have been applied for the preparation of fused purine derivatives.^{10,11} The first method involves the radical^{6,12-16} or ionic^{9,11,17-20} cyclization of substituted purines (9-substituted for fused [*e*]purines). The second method starts from a functionalized pyrimidine where the imidazole ring is formed by a cyclocondensation.^{7,8,10,11} The third method involves construction of the pyrimidine ring by heterocyclization of an appropriately substituted fused imidazole derivative.²¹⁻²⁵ Recently, ring closing metathesis (RCM) was used for the synthesis of asmarines (fused diazepino[*g*,*h*]purines).²⁶

In continuation of our studies on modified nucleosides,²⁷ and in connection with our efforts on the application of RCM metathesis for the synthesis of heterocycles,^{28,29} we report here the use of RCM^{30,31} for the synthesis of fused dihydropyrido[*e*]purines. The fused [*e*]purines may intercalate to DNA or bind to adenine binding sites of enzymes as the ring fusion preserves the base-pairing characteristics of the purine ring.^{18,32} The reactions studied and the products obtained are depicted in Schemes 1 and 2.

Allylation of 8-bromo-6-(piperidin-1-yl)-9*H*-purine (**2a**) [prepared by bromination of 6-(piperidin-1-yl)-9*H*-purine (**1a**)²⁷ (97%) with Br_2 in glacial CH₃COOH^{33,34}] with allyl bromide in DMF,³⁵ in the presence of K₂CO₃, gave the 9-allylpurine derivative **3a** (35%) and the corresponding 3-allylpurine derivative **4a** (58%) (Scheme 1). The structures of the allyl derivatives 3a and 4a were determined by ¹H NMR comparisons with 9-allyladenine and 3-allyladenine³⁶ and by NOE experiments (a 12% correlation between NCH₂CH=CH₂ and H-2 for 4a). The ratio of the allylated products 3a and 4a was analogous to the benzylated products prepared from 8-bromoadenine.³⁷ Stille³⁸⁻⁴⁰ coupling of the 9-allyl-8-bromopurine derivative 3a with allyltributyltin in the presence of a catalytic amount of Pd(PPh₃)₄ in dry DMF under N₂ at 95 °C afforded the 8,9-diallylpurine derivative 5a (71%), the 7-allylpurine derivative **6a** (14%) and the debromination product, 9-allyl-6-(piperidin-1-yl)-9H-purine²⁷ (10%). In NOE studies of the 7-allylpurine **6a**, 5% or 3% correlations between the β , γ -C**H**₂ or the α -CH₂ of the piperidine ring with the NCH₂CH=CH₂ unit were recorded. Derivative 6a is probably formed by isomerization of starting material **3a**. On using Pd(PPh₃)₂Cl₂ as the catalyst at 80 °C, the yields of the diallylated product 5a and the isomerization product 6a were only 21% and 5%, while 55% of the starting material remained unchanged. RCM of the 8,9-diallylpurine 5a using the Grubbs 2nd generation catalyst 7 (19 mol %) in CH₂Cl₂ at rt for 2 days gave 4-(piperidin-1-yl)-6,9-dihydropyrido[1,2-e]purine (8a) in 97% yield (Scheme 1).


By analogous reaction sequences from the 6-(morpholin-1-yl)-9*H*-purine (**1b**)²⁷ or the 6-(pyrrolidin-1-yl)-9*H*-purine (**1c**),²⁷ 8-bromo-6-(morpholin-1-yl)-9*H*-purine (**2b**)^{33,34} (85%) and 8-bromo-6-(pyrrolidin-1-yl)-9*H*-purine (**2c**)³⁴ (98%) were prepared. These were allylated to give the corresponding 9-allyl derivatives **3b** (34%) and **3c** (33%), the 3-allylpurine derivatives **4b** (61%) or **4c** (54%) being the major products. Stille coupling of the 9-allyl derivatives **3b** or **3c** with allyltributyltin in the presence of Pd(PPh₃)₄ at 95 °C afforded the 8,9-diallyl derivatives **5b** (73%) or



^{*} Corresponding author. Tel.: +30 2310997864; fax: +30 2310997679. *E-mail address:* klitinas@chem.auth.gr (K.E. Litinas).

^{0040-4039/\$ -} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.10.008

Scheme 1. Reagents and conditions: (i) Br₂, CH₃COOH, CH₃COONa, 80 °C, 3 h. (ii) Allyl bromide, K₂CO₃, DMF (dry), rt, 24 h. (iii) Allyltributyltin, Pd(PPh₃)₄, DMF (dry), N₂, 95 °C, 15 h. (iv) Catalyst 7 (19 mol %), CH₂Cl₂ (dry), argon, rt, 2 days.

Scheme 2. Reagents and conditions: (i) 4-bromo-1-butene, K₂CO₃, DMF (dry), rt, 24 h. (ii) Vinyltributyltin, Pd(PPh₃)₂Cl₂, DMF (dry), N₂, 80 °C, 15 h. (iii) Catalyst 7 (6 mol %), CH₂Cl₂ (dry), argon, rt, 24 h.

5c (72%) (Scheme 1), along with the isomerization products, the 7-allylpurine derivatives **6b** (26%) and **6c** (13%), and the debromination products, 9-allyl-6-(morpholin-1-yl)-9*H*-purine²⁷ (1%) and 9-allyl-6-(pyrrolidin-1-yl)-9*H*-purine²⁷ (12%). Finally, RCM reactions of the diallyl intermediates **5b** or **5c** with the 2nd generation Grubbs catalyst **7** gave 4-(morpholin-1-yl)-6,9-dihydropyrido[1,2-*e*]-purine (**8b**) (82%) and 4-(pyrrolidin-1-yl)-6,9-dihydropyrido[1,2-*e*]purine (**8c**) (84%).

Butenylation of purine **2a** with 4-bromo-1-butene in DMF in the presence of K_2CO_3 led to the 9-but-3-en-1-ylpurine derivative **9a** (31%) and the 3-(but-3-en-1-yl)purine derivative **10a** (57%) (Scheme 2). The structures of these products were established by NOE experiments (e.g., an 18% correlation between

NCH₂CH₂CH=CH₂ and H-2 was observed for **10a**). Stille coupling of the 8-bromo-9-(but-3-en-1-yl)purine derivative **9a** with vinyltributyltin in the presence of a catalytic amount of Pd(PPh₃)₂Cl₂ in dry DMF under N₂ at 80 °C afforded the 9-(but-3-en-1-yl)-8vinylpurine derivative **11a** (52%). RCM of the latter with catalyst **7** (6 mol %) in CH₂Cl₂ at rt over 24 h gave the 4-(piperidin-1-yl)-8,9-dihydropyrido[1,2-e]purine (**12a**) in 93% yield.

The 9-(but-3-en-1-yl) purine derivatives **9b** (30%) and **9c** (35%) and the 3-(but-3-en-1-yl)purine derivatives **10b** (51%) and **10c** (41%) were isolated from analogous butenylation reactions of the bromo-compounds **2b** and **2c**. The Stille coupling reactions of the 8-bromo-9-(but-3-en-1-yl) derivatives **9b** and **9c** with vinyltributyltin in the presence of a catalytic amount of $Pd(PPh_3)_2Cl_2$ in dry

DMF under N₂ at 80 °C resulted in the 9-(but-3-en-1-yl)-8-vinylpurine derivatives **11b** (51%) and **11c** (59%). When Pd(PPh₃)₄ was used for the synthesis of compound 11c instead of Pd(PPh₃)₂Cl₂, the results were almost the same (58% yield). Vinyl compounds 11a-c appeared to polymerize after evaporation of the solvent in air, and so were stored under argon in a refrigerator. RCM of compounds **11b** and **c** with catalyst **7** (6 mol %) afforded 4-(morpholin-1-yl)-8,9-dihydropyrido[1,2-*e*]purine (**12b**) (90%) and 4-(pyrrolidin-1-yl)-8,9-dihydropyrido[1,2-e]purine (12c) (85%).

In conclusion, dihydropyrido[e]purine derivatives have been synthesized by RCM reactions in good yields for the final step.

Supplementary data

Supplementary data (general procedures, spectral, and analytical data) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.10.008.

References and notes

- 1. (a) De Clercq, E. J. Clin. Virol. 2004, 30, 115; (b) De Clercq, E. Curr. Med. Chem. 2001, 8, 1543; (c) De Clercq, E. J. Med. Chem. 1995, 38, 2491; (d) De Clercq, E. J. Med. Chem. 2005, 48, 1297; (e) De Clercq, E.; Field, H. J. Br. J. Pharmacol. 2006, 147, 1
- 2. Herdewijn, P. In Modified Nucleosides in Biochemistry Biotechnology and Medicine; Wiley-VCH: Weinheim, Germany, 2008.
- 3 Parker, W. B. Chem. Rev. 2009, 109, 2880.
- 4. Matsuda, A.; Sasaki, T. Cancer Sci. 2004, 95, 105.
- Mieczkowski, A.; Roy, V.; Agrofoglio, L. A. Chem. Rev. 2010, 110, 1828.
- Len, C.; Mondon, M.; Lebreton, J. Tetrahedron 2008, 64, 7453. 6. 7
- Rybar, A. Adv. Heterocycl. Chem. 2005, 88, 175.
- Rybar, A. Adv. Heterocycl. Chem. 2004, 87, 85. 8.
- Khalyullin, F. A.; Kochergin, P. M.; Strokin, Y. V.; Kataev, V. A. Pharm. Chem. J. 9 1992, 26, 270.
- 10. Desaubry, L.; Wermuth, C. G.; Bourgqignon, J.-J. Tetrahedron Lett. 1995, 36, 4249.
- 11. Suzuki, H.; Yamamoto, M.; Shimura, S.; Miyamoto, K.; Yamamoto, K.; Sawanishi, H. Chem. Pharm. Bull. 2002, 50, 1163.
- Matsuda, A.; Tezuka, M.; Ueda, T. Tetrahedron 1978, 34, 2449. 12.
- 13. Usui, H.; Ueda, T. Chem. Pharm. Bull. 1986, 34, 1518.
- Manetto, A.; Georganakis, D.; Leondiadis, L.; Gimisis, T.; Mayer, P.; Carell, T.; 14. Chatgilialoglu, C. J. Org. Chem. 2007, 72, 3659.
- 15. Barton, D. H. R.; Gero, S. D.; Quiclet-Sire, B.; Samadi, M.; Vincent, C. Tetrahedron 1991. 47. 9383
- 16. Kittaka, A.; Tanaka, H.; Yamada, N.; Miyasaka, T. Tetrahedron Lett. 1996, 37, 2801.
- 17. Harper, P. J.; Hampton, A. J. Org. Chem. 1972, 37, 795.
- Cerna, I.; Pohl, R.; Klepetarova, B.; Hocek, M. J. Org. Chem. 2010, 75, 2302. 18.
- 19. Mosselhi, M. A. N.; Darwish, E. S.; Peseke, K. Monatsh. Chem. 2008, 139, 825.
- Ueda, T.; Oh, R.; Nagai, S.; Sakakibara, J. J. Heterocycl. Chem. 1998, 35, 135. 20.
- Xia, G. X.; Li, J. F.; Lai, S. A.; Peng, A. M.; Zhang, S. J.; Wei, X. H.; Chen, X. J.; Ji, R. 21. Y. Chin. Chem. Lett. 2005, 16, 1283.
- Pinquet, F.; Mavel, S.; Galtier, C.; Gueiffier, A. Pharmazie 1999, 54, 876. 22.
- 23. Salgado-Zamora, H.; Taylor, E. C. Heterocycl. Commun. 2006, 12, 307.
- Pyatin, B. M.; Granik, V. G.; Gluskov, R. G. Chem. Pharm. J. 1970, 4, 683. 24.
- Glushkov, R. G.; Magidson, O. Y. Gen. Chem. J. 1961, 31, 1085. 25.
- 26 Vik, A.; Gundersen, L.-L. Tetrahedron Lett. 2007, 48, 1931.
- Thalassitis, A.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Miltiadou, P. Bioorg. Med. 27. Chem. Lett. 2009, 19, 6433.
- 28 Litinas, K. E.; Salteris, B. E. J. Chem. Soc., Perkin Trans. 1 1997, 2869.
- Gallos, J. K.; Koftis, T. V.; Sarli, V. C.; Litinas, K. E. J. Chem. Soc., Perkin Trans. 1 29. 1999 3075

- 30. For recent reviews, see, for example: (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746; (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117; (c) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592; (d) Grubbs, R. H. In Handbook of Metathesism; Wiley-VCH: Weinheim, Germany, 2003.
- 31. For reviews on RCM in the synthesis of heterocycles, see, for example: (a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199; (b) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239; (c) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073; (d) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371.
- 32. Debouzy, J. C.; Crouzy, S.; Dabouis, V.; Gueiffier, A.; Brasme, B.; Bachelet, C.; Favier, A.; Simorre, J. P.; Mazet, L.; Peinnequin, A. Arch. Biochem. Biophys. 1999, 367. 202.
- 33. Roitshtein, L. N.; Muravich-Aleksandr, K. L.; El'tsov, A. V. J. Gen. Chem. (USSR) 1969, 39, 2077.
- 34. Selected data (the data for other procedures and compounds are provided as Supplementary data):

(a) General procedure for the Stille coupling of 9-allyl-8-bromo-6-N-substituted purines with Pd(PPh₃)₄. Allyltributyltin (64 mg, 0.06 ml, 0.197 mmol) was added to a stirred solution of compound **3a** (50 mg, 0.155 mmol) and Pd(PPh₃)₄ (8 mg, 0.0069 mmol) in dry DMF (3 ml) under N₂ and heated at 95 °C for 12 h. Additional Pd(PPh₃)₄ (10%) (5 mol % in total) and allyltributyltin (0.217 mmol in total) were added and the mixture heated at 95 °C for a further 3 h. The resulting precipitate was removed by filtration, the filtrate evaporated and the residue chromatographed [silica gel, hexane/EtOAc (2:1)] to give, from the faster moving band, *8,9-diallyl-6-(piperidin-1-yl)-9H-purine* (**5a**) (71% yield), oil, IR (neat): 3050, 2910, 2840, 1570 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.65–1.80 (m, 6H), 3.61 (dt, 2H, J_1 = 1.6 Hz, J_2 = 6.2 Hz), 4.17–4.34 (m, 4H), 4.77 (dt, 2H, $J_1 = 1.7$ Hz, $J_2 = 5.0$ Hz), 4.96 (ddt, 1H, $J_1 = 0.7$ Hz, $J_2 = 1.7$ Hz, $J_2 = 17.2$ Hz), 5.15 (dq, 1H, $J_1 = 1.6$ Hz, $J_2 = 17.4$ Hz), 5.17–5.23 (m, 2H), 5.87–6.12 (m, 2H), 8.29 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 24.9, 26.1, 32.5, 44.2, 46.4, 117.1, 117.7, 119.0, 132.4, 132.7, 147.8, 151.9, 152.0, 153.5. MS (ESI): 283 [M]⁺. Anal. Calcd for C₁₆H₂₁N₅: C, 67.82; H, 7.47; N, 24.71. Found: C, 67.93; H, 7.58; N, 24.46.

(b) General procedure for the RCM reactions of 8,9-diallylpurines. Catalyst 7 [26 mg (in 4 portions each after 2 h), 0.0306 mmol, 19 mol %] was added to a degassed solution of compound 5a (45 mg, 0.158 mmol) in dry CH₂Cl₂ (25 ml) and the solution stirred at rt for 48 h. After evaporation of the solvent, the residue was purified by column chromatography [silica gel, hexane/EtOAc (2:1)] to give 4-(piperidin-1-yl)-6,9-dihydropyrido[1,2-e]purine (8a) (97% yield), mp 113-115 °C (hexane/EtOAc), IR (KBr): 3016, 2927, 2847, 1588 cm-• ¹H MMR (300 MHz, CDCl₃) δ 1.63–1.81 (m, 6H), 3.59–3.68 (m, 2H), 4.17–4.28 (m, 4H), 4.66–4.74 (m, 2H), 6.00–6.12 (m, 2H), 8.30 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) § 21.0, 24.9, 25.6, 42.1, 46.4, 119.4, 120.0, 122.2, 143.9, 150.7, 151.6, 153.3. MS (ESI): 256 [M+H]⁺. Anal. Calcd for C₁₄H₁₇N₅: C, 65.86; H, 6.71; N, 27.43. Found: C, 66.11; H, 6.65; N, 27.25.

(c) General procedure for the RCM reactions of 9-(but-3-en-1-yl)-8-vinylpurines. The catalyst 7 [10 mg (in 4 potions each after 2 h), 0.0118 mmol, 6 mol %] was added to a degassed solution of compound 11a (60 mg, 0.31 mmol) in dry CH₂Cl₂ (30 ml), and the solution was stirred at rt for 24 h. After evaporation of the solvent, the residue was purified by column chromatography [silica gel, hexane/EtOAc (1:1)] to give 4-(piperidin-1-yl)-8,9-dihydropyrido[1,2-e]purine (12a) (93% yield), mp 75–77 °C (hexane/EtOAc), IR (KBr): 3018, 2925, 2852, 1587 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.59–1.80 (m, 6H), 2.64–2.75 (m, 2H), 4.15–4.29 (m, 6H) 6.41 (dt, 1H, J_1 = 4.4 Hz, J_2 = 10.0 Hz), 6.63 (dt, 1H, J_1 = 1.7 Hz, J_2 = 10.0 Hz), 8.30 (s, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 23.3, 24.8, 26.1, 38.6, 46.3, 119.6, 120.3, 132.3, 144.0, 150.8, 152.2, 153.4. MS (ESI): 256 $[M+H]^{+}$, 278 $[M+Na]^{+}$. Anal. Calcd for $C_{14}H_{17}N_5$: C, 65.86; H, 6.71; N, 27.43. Found: C, 65.95; H, 6.86; N, 27.32.

- 35. Gundersen, L.-L. Acta Chem. Scand. 1996, 50, 58.
- Platzer, N.; Galons, H.; Bensaid, Y.; Miocque, M.; Bram, G. Tetrahedron 1987, 43, 36. 2101.
- 37 Li, X.; Vince, R. Bioorg. Med. Chem. 2006, 14, 5742.
- Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. 38.
- Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704. 39
- Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Org. Process Res. Dev. 40. 2010. 14. 30.